Which expression is equivalent to x Superscript negative five-thirds? StartFraction 1 Over RootIndex 5 StartRoot x cubed EndRoot EndFraction StartFraction 1 Over RootIndex 3 StartRoot x Superscript 5 Baseline EndRoot EndFraction Negative RootIndex 3 StartRoot x Superscript 5 Baseline EndRoot Negative RootIndex 5 StartRoot x cubed EndRoot

Respuesta :

Option B : [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex] is the expression equivalent to [tex]x^{-\frac{5}{3}[/tex]

Explanation:

The given expression is [tex]x^{-\frac{5}{3}[/tex]

Rewriting the expression [tex]x^{-\frac{5}{3}[/tex] using the exponent rule, [tex]$a^{-b}=\frac{1}{a^{b}}$[/tex]

Hence, we get,

[tex]\frac{1}{x^{\frac{5}{3} } }[/tex]

Simplifying, we get,

[tex]\frac{1}{\left(x^{5}\right)^{\frac{1}{3}}}[/tex]

Applying the rule, [tex]a^{\frac{1}{n}}=\sqrt[n]{a}[/tex]

Thus, we have,

[tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex]

Now, we shall determine from the options that which expression is equivalent to [tex]x^{-\frac{5}{3}[/tex]

Option A: [tex]\frac{1}{\sqrt[5]{x^{3} } }[/tex]

The expression [tex]\frac{1}{\sqrt[5]{x^{3} } }[/tex] is not equivalent to simplified expression  [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex]

Thus, the expression [tex]\frac{1}{\sqrt[5]{x^{3} } }[/tex] is not equivalent to [tex]x^{-\frac{5}{3}[/tex]

Hence, Option A is not the correct answer.

Option B: [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex]

The expression [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex] is equivalent to the simplified expression  [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex]

Thus, the expression [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex] is equivalent to [tex]x^{-\frac{5}{3}[/tex]

Hence, Option B is the correct answer.

Option C: [tex]-\sqrt[3]{x^5}[/tex]

The expression [tex]-\sqrt[3]{x^5}[/tex] is not equivalent to the simplified expression [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex]

Thus, the expression [tex]-\sqrt[3]{x^5}[/tex] is not equivalent to [tex]x^{-\frac{5}{3}[/tex]

Hence, Option C is not the correct answer.

Option D: [tex]-\sqrt[5]{x^3}[/tex]

The expression [tex]-\sqrt[5]{x^3}[/tex] is not equivalent to the simplified expression [tex]\frac{1}{\sqrt[3]{x^{5} } }[/tex]

Thus, the expression [tex]-\sqrt[5]{x^3}[/tex] is not equivalent to [tex]x^{-\frac{5}{3}[/tex]

Hence, Option D is not the correct answer.

The equivalent expression to x Superscript negative five-thirds is "StartFraction 1 Over RootIndex 3 StartRoot x Superscript 5 Baseline EndRoot EndFraction"

[tex] = \frac{1}{ \sqrt[3]{ {x}^{5} } } [/tex]

Given:

x Superscript negative five-thirds

[tex] = {x}^{ - \frac{5}{3} } [/tex]

[tex] = \frac{1}{ {x}^{ \frac{5}{3} } } [/tex]

[tex] = \frac{1}{ \sqrt[3]{ {x}^{5} } } [/tex]

Given options:

  • StartFraction 1 Over RootIndex 5 StartRoot x cubed EndRoot EndFraction

  • StartFraction 1 Over RootIndex 3 StartRoot x Superscript 5 Baseline EndRoot EndFraction

  • Negative RootIndex 3 StartRoot x Superscript 5 Baseline EndRoot

  • Negative RootIndex 5 StartRoot x cubed EndRoot

Therefore, the equivalent expression to x Superscript negative five-thirds is "StartFraction 1 Over RootIndex 3 StartRoot x Superscript 5 Baseline EndRoot EndFraction"

Learn more about be fraction:

https://brainly.com/question/13136492