Respuesta :

The simplified fraction is [tex]{\frac{4x}{(x+3)(1+3x)}[/tex].

Solution:

Given expression is

[tex]$\frac{\frac{4}{x+3}}{\frac{1}{x}+3}[/tex]

Let us first simplify the fraction in denominator.

[tex]$\frac{1}{x}+3 =\frac{1}{x} +\frac{3}{1}[/tex]

To make the denominator same multiply and divide the 2nd term by x.

        [tex]$ =\frac{1}{x} +\frac{3x}{x}[/tex]

[tex]$ \frac{1}{x}+3 =\frac{1+3x}{x}[/tex]

Substitute this in the given fraction.

[tex]$\frac{\frac{4}{x+3}}{\frac{1}{x}+3}=\frac{\frac{4}{x+3}}{\frac{1+3x}{x}}[/tex]

         [tex]$={\frac{4}{x+3}\times \frac{x}{1+3x}[/tex]

         [tex]$={\frac{4x}{(x+3)(1+3x)}[/tex]

Hence the simplified fraction is [tex]{\frac{4x}{(x+3)(1+3x)}[/tex].