A volume of 500.0 mL of 0.160 M NaOH is added to 585 mL of 0.200 M weak acid ( K a = 1.28 × 10 − 5 ) . What is the pH of the resulting buffer? HA ( aq ) + OH − ( aq ) ⟶ H 2 O ( l ) + A − ( aq

Respuesta :

Answer : The pH of the resulting buffer is, 5.22

Explanation : Given,

[tex]K_a=1.28\times 10^{-5}[/tex]

First we have to calculate the moles of [tex]NaOH\text{ and }HA[/tex]

[tex]\text{Moles of }NaOH=\text{Concentration of }NaOH\times \text{Volume of solution}}=0.160M\times 0.500L=0.08mol[/tex]

and,

[tex]\text{Moles of }HA=\text{Concentration of }HA\times \text{Volume of solution}}=0.200M\times 0.585L=0.117mol[/tex]

The balanced chemical reaction is:

[tex]HA+(aq)+OH^-(aq)\rightarrow H_2O(l)+A^-(aq)[/tex]

Moles of HA left = 0.117 mol - 0.08 mol = 0.037 mol

Moles of [tex]A^-[/tex] = 0.08 mol

The expression used for the calculation of [tex]pK_a[/tex] is,

[tex]pK_a=-\log (K_a)[/tex]

Now put the value of [tex]K_a[/tex] in this expression, we get:

[tex]pK_a=-\log (1.28\times 10^{-5})[/tex]

[tex]pK_a=5-\log (1.28)[/tex]

[tex]pK_a=4.89[/tex]

Now we have to calculate the pH of buffer.

Using Henderson Hesselbach equation :

[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]

[tex]pH=pK_a+\log \frac{[A^-]}{[HA]}[/tex]

Now put all the given values in this expression, we get:

[tex]pH=4.89+\log (\frac{0.08}{0.037})[/tex]

[tex]pH=5.22[/tex]

Thus, the pH of the resulting buffer is, 5.22

The pH of the resulting buffer is, 5.22

The Parameters and Calculations:

First, we have to calculate the moles of NaOH and HA which is 0.08mol and 0.117mol

Next, after we balance the equation, we now find the moles of A^-= 0.08 mol.

Now, to calculate the pH of buffer:

pH= pKa + log Salt/Acid

= 4.89 + log(0.08/0.037)

=> 5.22

Therefore, the pH of the resulting buffer is, 5.22

Read more about volume here:
https://brainly.com/question/23963432