Respuesta :
Answer : The pH of the resulting buffer is, 5.22
Explanation : Given,
[tex]K_a=1.28\times 10^{-5}[/tex]
First we have to calculate the moles of [tex]NaOH\text{ and }HA[/tex]
[tex]\text{Moles of }NaOH=\text{Concentration of }NaOH\times \text{Volume of solution}}=0.160M\times 0.500L=0.08mol[/tex]
and,
[tex]\text{Moles of }HA=\text{Concentration of }HA\times \text{Volume of solution}}=0.200M\times 0.585L=0.117mol[/tex]
The balanced chemical reaction is:
[tex]HA+(aq)+OH^-(aq)\rightarrow H_2O(l)+A^-(aq)[/tex]
Moles of HA left = 0.117 mol - 0.08 mol = 0.037 mol
Moles of [tex]A^-[/tex] = 0.08 mol
The expression used for the calculation of [tex]pK_a[/tex] is,
[tex]pK_a=-\log (K_a)[/tex]
Now put the value of [tex]K_a[/tex] in this expression, we get:
[tex]pK_a=-\log (1.28\times 10^{-5})[/tex]
[tex]pK_a=5-\log (1.28)[/tex]
[tex]pK_a=4.89[/tex]
Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]
[tex]pH=pK_a+\log \frac{[A^-]}{[HA]}[/tex]
Now put all the given values in this expression, we get:
[tex]pH=4.89+\log (\frac{0.08}{0.037})[/tex]
[tex]pH=5.22[/tex]
Thus, the pH of the resulting buffer is, 5.22
The pH of the resulting buffer is, 5.22
The Parameters and Calculations:
First, we have to calculate the moles of NaOH and HA which is 0.08mol and 0.117mol
Next, after we balance the equation, we now find the moles of A^-= 0.08 mol.
Now, to calculate the pH of buffer:
pH= pKa + log Salt/Acid
= 4.89 + log(0.08/0.037)
=> 5.22
Therefore, the pH of the resulting buffer is, 5.22
Read more about volume here:
https://brainly.com/question/23963432