Calculate the wavelength of the photon emitted when an electron makes a transition from n=6 to n=3. You can make use of the following constants: h=6.626×10−34 J⋅s c=2.998×108 m/s 1 m=109 nm

Respuesta :

Answer: The wavelength of light is [tex]1.094\times 10^{-6}m[/tex]

Explanation:

To calculate the wavelength of light, we use Rydberg's Equation:

[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_f^2}-\frac{1}{n_i^2} \right )[/tex]

Where,

[tex]\lambda[/tex] = Wavelength of radiation

[tex]R_H[/tex] = Rydberg's Constant  = [tex]1.097\times 10^7m^{-1}[/tex]

[tex]n_f[/tex] = Final energy level = 3

[tex]n_i[/tex] = Initial energy level = 6

Putting the values in above equation, we get:

[tex]\frac{1}{\lambda }=1.097\times 10^7m^{-1}\left(\frac{1}{3^2}-\frac{1}{6^2} \right )\\\\\lambda =\frac{1}{914617m^{-1}}=1.094\times 10^{-6}m[/tex]

Hence, the wavelength of light is [tex]1.094\times 10^{-6}m[/tex]