Find all the zeroes of the polynomial function f(x)=x^3-5x^2+6x-30 in you use synthetic division show all three lines of numbers


please show steps and thank you

Respuesta :

Answer:

One real root  [tex]x_{1}=5[/tex]

Two imaginary roots [tex]x_{2}=2.449489i[/tex]             [tex]x_{3}=-2.449489i[/tex]          

Step-by-step explanation:

Given polynomial,

[tex]f\left ( x \right )=x^{3}-5x^{2}+6x-30[/tex]

[tex]f\left ( x \right )=x^{3}-5x^{2}+6x-30=0[/tex]

[tex]f\left ( x-k \right )=0[/tex]

Apply hit and trial method  to find zero

[tex]x=5[/tex]

[tex]f\left ( 5 \right )=5^{3}-5\times 5^{2}+6\times 5-30[/tex]

       [tex]=125-125+30-30[/tex]

[tex]f\left ( 5 \right ) =0[/tex]

This polynomial has one factor is     [tex]\left ( x-5 \right )[/tex]

We can find another factor

[tex]f\left ( x \right )/\left ( x-5 \right )=\left ( x^{3}-5x^{2}+6x-30\right )/\left ( x-5 \right )[/tex]

                     [tex]=x^{2}+6[/tex]

[tex]f\left ( x \right )=\left ( x-5 \right )\left ( x^{2}+6 \right )=0[/tex]

          [tex]\left ( x-5 \right )\left ( x^{2}+6 \right )=0[/tex]

               [tex]\left ( x-5 \right )=0[/tex]

Real root           [tex]x_{1}=5[/tex]

    [tex]\left ( x^{2}+6 \right )=0[/tex]                 [tex]\left ( x^{2}+6 \right )[/tex]  is always positive so it have no real roots

Roots are imaginary

[tex]x_{2}=2.449489i[/tex]

[tex]x_{3}=-2.449489i[/tex]

[tex]f\left ( x \right )[/tex] has one real root and two imaginary roots