Respuesta :

Answer:

[tex]x = \dfrac{24}{25}[/tex]

Step-by-step explanation:

In the equation

[tex]1296^{5x-11}=7776^{-x-4}[/tex]

the bases can be rewritten to give

[tex](6^4)^{5x-11}=(6^5)^{-x-4}[/tex]

which simplifies to

[tex]6^{4(5x-11)}=6^{5(-x-4)}[/tex]

[tex]6^{(20x-44)}=6^{(-5x-20)}[/tex]

taking [tex]log_6[/tex] of both sides gives

[tex]{(20x-44)}={(-5x-20)}[/tex]

and solving for [tex]x[/tex] gives

[tex]\boxed{x = \dfrac{24}{25}}[/tex]

which is our solution.