Respuesta :

Answer:

[tex]1<x<4[/tex]

Step-by-step explanation:

Part 1) Find the value of x

we know that

The triangle ABC is an isosceles triangle, because has two equal sides

AB=BC

so

∠A=∠C

Remember that the sum of the interior angles in any triangle must ne equal to 180 degrees

so

[tex]A+B+C=180^o[/tex]

we have

[tex]B=35^o+20^o=55^o[/tex]

Find the measure of angle A

[tex]2A+55^o=180^o[/tex]

[tex]2A=125^o[/tex]

[tex]A=62.5^o[/tex]

therefore

[tex]B=62.5^o[/tex]

Applying the law of sines In the triangle ABD

[tex]\frac{12}{sin(35^o)}=\frac{BD}{sin(62.5^o)}[/tex]

solve for BD

[tex]BD=\frac{12}{sin(35^o)}sin(62.5^o)[/tex] ----> equation A

Applying the law of sines In the triangle CDB

[tex]\frac{4x-4}{sin(20^o)}=\frac{BD}{sin(62.5^o)}[/tex]

solve for BD

[tex]BD=\frac{4x-4}{sin(20^o)}sin(62.5^o)[/tex] ----> equation B

equate equation A and equation B

[tex]\frac{12}{sin(35^o)}sin(62.5^o)=\frac{4x-4}{sin(20^o)}sin(62.5^o)[/tex]

solve for x

[tex]12sin(20^o)=(4x-4)sin(35^o)[/tex]

[tex]12sin(20^o)=(4x)sin(35^o)-4sin(35^o)[/tex]

[tex](4x)sin(35^o)=12sin(20^o)+4sin(35^o)[/tex]

[tex]x=[12sin(20^o)+4sin(35^o)]/(4sin(35^o))[/tex]

[tex]x=2.8\ units[/tex]

Part 2) Find the range of values of x

Remember that

(4x-4) must be greater than zero

so

[tex]4x-4>0[/tex]

[tex]4x>4\\x>1[/tex]

we know that

In any triangle: The shortest side is always opposite the smallest interior angle. The longest side is always opposite the largest interior angle

That means

[tex]4x-4< 12[/tex]

solve for x

[tex]4x< 16\\x<4[/tex]

therefore

[tex]1<x<4[/tex]