Respuesta :

Answer:

       [tex]\sqrt[n]{a} =a^{\frac{1}{n}}[/tex]

Explanation:

Roots of real numbers can be represented by radicals or by exponents.

First, I present some examples to show how exponents and radicals are related, and then generalize.

      [tex]\sqrt{4}=4^{(\frac{1}{2})}=(2^2)^\frac{1}{2}=(2)^{\frac{2}{2}}=2^1=2\\\\\\\sqrt{25}=(25)^{\frac{1}{2}}=(5^2)^{\frac{1}{2}}=(5)^{\frac{2}{2}}=5^1=5[/tex]

       [tex]\sqrt[3]{8}=(8)^{\frac{1}{3}}=(2^3)^{\frac{1}{3}}=(2)^{\frac{3}{3}}=2^1=2[/tex]

When you write 5² = 25, then 5 is the square root of 25.

And in general, if n is a positive integer and [tex]a^n=x[/tex] , then [tex]a[/tex] is the nth root of x.

Also, if n even (and positive)  and [tex]a[/tex] is positive, then [tex]a^{\frac{1}{n}}[/tex]   is the positive nth root of [tex]a[/tex]

Thus,

       [tex]\sqrt[n]{a} =a^{\frac{1}{n}}[/tex]