Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL congruent to (triangle)QNP?

Triangle JKL has vertices J25 K11 and L52 Triangle QNP has vertices Q44 N30 and P71 Is triangleJKL congruent to triangleQNP class=

Respuesta :

Answer:

Yes they are

Step-by-step explanation:

In the triangle JKL, the sides can be calculated as following:

  • J(2;5); K(1;1)

             => JK = [tex]\sqrt{(1-2)^{2} + (1-5)^{2} } = \sqrt{(-1)^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}[/tex]

  • J(2;5); L(5;2)

             => JL = [tex]\sqrt{(5-2)^{2} + (2-5)^{2} } = \sqrt{3^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}[/tex]

  • K(1;1); L(5;2)

             =>  KL = [tex]\sqrt{(5-1)^{2} + (2-1)^{2} } = \sqrt{4^{2}+1^{2} } = \sqrt{1+16}=\sqrt{17}[/tex]

In the triangle QNP, the sides can be calculate as following:

  • Q(-4;4); N(-3;0)

             => QN = [tex]\sqrt{[-3-(-4)]^{2} + (0-4)^{2} } = \sqrt{1^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}[/tex]

  • Q (-4;4); P(-7;1)

   => QP = [tex]\sqrt{[-7-(-4)]^{2} + (1-4)^{2} } = \sqrt{(-3)^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}[/tex]

  • N(-3;0); P(-7;1)

             =>  NP = [tex]\sqrt{[-7-(-3)]^{2} + (1-0)^{2} } = \sqrt{(-4)^{2}+1^{2} } = \sqrt{16+1}=\sqrt{17}[/tex]

It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP

=> They are congruent triangles