Respuesta :

Answer:

52 is the smallest number among that three even numbers.

Step-by-step explanation:

Keep in mind, that two consecutive even numbers have a difference of 2.

For example, [tex]10[/tex] is an even number. The even number right before

  • Let [tex]x[/tex] be the smallest of that three even numbers.
  • The even number right after [tex]x[/tex] would be [tex](x + 2)[/tex].
  • The even number right after [tex](x + 2)[/tex] would be [tex]((x + 2) + 2)[/tex].

The sum of these three numbers would be:

[tex]x + (x+ 2) + ((x + 2)+ 2) = 3\,x + 6[/tex].

The question states that this sum shall be equal to [tex]162[/tex]. In other words,

[tex]3\, x + 6 = 162[/tex].

Subtract [tex]6[/tex] from both sides of the equation:

[tex]3\, x = 162 - 6[/tex].

[tex]3\, x = 156[/tex].

Divide both sides by [tex]3[/tex] to obtain:

[tex]x = 52[/tex].

hence, the smallest of the three even numbers is 52.