Respuesta :

Answer:

JK - 20

Step-by-step explanation:

As JLM is a square triangle, so that we have the formula to calculate the corner ∡LMJ

We have tan∡LMJ = LJ/ JM =45/60 = 0.75

+) As ∡LMK = ∡KMJ  => tan ∡LMK = tan ∡KMJ

+) ∡LMK + ∡KMJ = ∡LMJ

We have the formula: tan (x+y) = [tex]\frac{tan x + tan y}{1 - tanx* tany}[/tex]

=> tan (∡LMK + ∡KMJ) = [tex]\frac{tanLMK + tan KMJ}{1- tanLMK*tanKMJ} = \frac{2 tan KMJ}{1-tan^{2}KMJ }[/tex]

As tan (∡LMK + ∡KMJ) = tan ∡LMJ  = 0.75

=> [tex]\frac{2 tan KMJ}{1-tan^{2}KMJ }[/tex] = 0.8

=> 0.75 - 0.75 x [tex]tan^{2} KMJ[/tex] = 2tanKMJ

As 0 <  ∡KMJ  < [tex]\pi /2[/tex] => tan KMJ > 0

=> tan KMJ = 1/3

As JKM is also a square triangle

=> We have tan∡KMJ = JK/JM

=> 1/3 = JK/JM

=. JK = JM x (1/3) = 60 x (1/3) = 20

So JK = 20