contestada

1. Cylinder A, B, and C have the same radius but different heights. Put the cylinders in
order of their volume from least to greatest.

Respuesta :

The order of volume from least to greatest is C, B and A.

Step-by-step explanation:

Given:

Three Cylinders namely A, B, and C with different heights have the same radius.

To Find:

Arrange the cylinders from least to greatest with respective to their volume.

Formula for volume of cylinder:

                                               V= [tex]\pi r^{2} h[/tex]

                                           i.e V∝ h              (for constant radius)

where,

           r = radius of cylinder

           h = height of cylinder

we see that Volume is directly proportional to height.

Consider, [tex]h_{1}, h_{2},h_{3}[/tex] are the heights of cylinder A,B,C respectively, such that;

                                    [tex]h_{1}[/tex] > [tex]h_{2}[/tex] > [tex]h_3}[/tex]

And,  [tex]V_{1}, V_{2},V_{3}[/tex]  are the volume of cylinder A,B,C respectively.

So the order of volume will also be,

                                     [tex]V_{1}[/tex] > [tex]V_{2}[/tex] > [tex]V_3}[/tex]