Respuesta :
Our values are given as,
[tex]f_1 = 261.6Hz[/tex]
[tex]T = 20.0\°C = 293K[/tex]
[tex]f_{beat} = 3.00Hz[/tex]
PART A) To get the speed of sound we use the equation
[tex]v = (331 m/s)\sqrt{\frac{T}{273K}}[/tex]
So the speed of sound at [tex]20.0\°C[/tex] will be,
[tex]v = (331m/s)\sqrt{\frac{293K}{273K}}[/tex]
[tex]v = 343m/s[/tex]
We know that for an open pipe the first harmonic or the fundamental mode will be
[tex]\lambda_1 = 2L[/tex]
[tex]\lambda_1 = \frac{v}{f_1}[/tex]
[tex]\lambda_1 = (\frac{343m/s}{261.6Hz})[/tex]
[tex]\lambda_1 = 1.31m[/tex]
So the length of the flute will be
[tex]L = \frac{\lambda_1}{2}[/tex]
[tex]L = \frac{1.31m}{2}[/tex]
[tex]L = 0.65m[/tex]
[tex]L = 65cm[/tex]
PART B) As the person in the colder room also attempts to play middle C the fundamental wavelength is unchanged so that,
[tex]\lambda_1' = \lambda_1[/tex]
[tex]\lambda_1' = 1.31m[/tex]
So from the second player in the colder room the frequency will be
[tex]f_1' = f_1-f_{beat}[/tex]
[tex]f_1' = 261.6Hz - 3.00 Hz[/tex]
[tex]f_1' = 258Hz[/tex]
So the speed of sound in this room will be
[tex]v' = \lambda_1' f_1'[/tex]
[tex]v' = (1.31m)(258.6Hz)[/tex]
[tex]v' = 339m/s[/tex]
So we get the temperature in the room from
[tex]v = (331m/s)\sqrt{\frac{T}{273K}}[/tex]
Rearranging to find the temperature
[tex]T = (273K)(\frac{339}{331})^2[/tex]
[tex]T = 286K[/tex]
[tex]T = 13.0\°C[/tex]