Trigonometry
Objective: Use trigonometry functions to find the area of triangles.

In ΔXYZ, XY=13, XZ=8, and m< x=34*. Find the area of ΔXYZ, to the nearest tenth of a square unit.

Respuesta :

The area of the triangle XYZ is 29.1 square units

Explanation:

Given that the measurements of the sides of the triangle XYZ are [tex]XY = 13[/tex], [tex]XZ=8[/tex] and [tex]m\angle X=34^{\circ}[/tex]

We need to determine the area of the triangle XYZ

Area of the triangle:

The area of the triangle can be determined using the formula,

[tex]Area=\frac{1}{2} yz \ sin X[/tex]

Substituting the values, we get,

[tex]Area=\frac{1}{2}(13)(8) \ sin 34[/tex]

Simplifying, we get,

[tex]Area=\frac{1}{2}(104) (0.56)[/tex]

Multiplying the terms, we get,

[tex]Area=\frac{58.24}{2}[/tex]

Dividing the terms, we have,

[tex]Area=29.12[/tex]

Rounding off to the nearest tenth, we get,

[tex]\text {Area}=29.1[/tex]

Thus, the area of the triangle XYZ is 29.1 square units.