Trigonometry
Objective: Use trigonometry functions to find the area of triangles.
In ΔABC, AB=21, AC=16, and m< A=67*. Find the area of ΔABC, to the nearest tenth of a square unit.

Respuesta :

The area of the triangle ABC is 154.6 square units

Explanation:

Given that the measurements of the sides of the triangles are [tex]AB=21[/tex] , [tex]AC=16[/tex] and [tex]m\angle A=67^{\circ}[/tex]

We need to determine the area of the triangle ABC

Area of triangle ABC:

The area of the triangle can be determined using the formula,

[tex]\text {Area}=\frac{1}{2} b c \sin A[/tex]

Substituting the values, we get,

[tex]\text {Area}=\frac{1}{2}(21)(16) \sin 67^{\circ}[/tex]

Simplifying the terms, we get,

[tex]\text {Area}=\frac{1}{2}(21)(16) (0.92)[/tex]

Multiplying the values, we have,

[tex]\text {Area}=\frac{309.12}{2}[/tex]

Dividing, we get,

[tex]\text {Area}=154.56[/tex]

Rounding off to the nearest tenth, we get,

[tex]Area = 154.6[/tex]

Thus, the area of the triangle ABC is 154.6 square units