Answer:
Value of [tex]f^{-1}(\{4\})[/tex] is 8.
Step-by-step explanation:
Given function,
[tex]f(x)=\big[\frac{x}{2}\big][/tex]
we have to find : [tex]f^{-1}(\{4\})[/tex]
It is known that,
[tex][x][/tex]=the greatest integer <=x
Then,
[tex]f(x)=\big[\frac{x}{2}\big][/tex]
[tex]\implies x=f^{-1}(\big[\frac{x}{2}\big])[/tex]
Taking x=8 we get,
[tex]f^{-1}(\big[\frac{x}{2}\big])=x[/tex]
[tex]\implies f^{-1}(\big[\frac{8}{2}\big])=8[/tex]
[tex]\implies f^{-1}([4])=8[/tex]
[tex]\implies f^{-1}(\{4\})=8[/tex] ( Since [4]=4 )
Hence the value of [tex]f^{-1}(\{4\})[/tex] is 8.