Answer:
[tex]t=808.9h[/tex]
Explanation:
Hello,
In this case, the moles consumed in one our by 4 burners turns out:
[tex]n=\frac{165L*1atm}{0.082\frac{atm*L}{mol*K}*298.15K}*4=27.0\frac{mol}{h}[/tex]
Now, 500 gallons of propane are available and equivalent to the following amount in moles (propane's molar mass is 44g/mol):
[tex]n_{available}=500galC_3H_8*\frac{3.785LC_3H_8}{1galC_3H_8}*\frac{0.5077kgC_3H_8}{1LC_3H_8}*\frac{1000gC_3H_8}{1kgC_3H_8}*\frac{1molC_3H_8}{44gC_3H_8} \\n_{available}=21836.9molC_3H_8[/tex]
Finally, the time for the 4 burners to burn the 500 gallons of propane result in:
[tex]t=\frac{21836.9mol}{27.0mol/h} \\\\t=808.9h[/tex]
Best regards.