Respuesta :

Answer:

[tex]\displaystyle L(x)=1+\frac{1}{4}x[/tex]

Step-by-step explanation:

Linearization

It consists in finding a linear approximate function around certain point x=a of a non linear function. The equation used to linearize a function f is given by

[tex]L(x)=f(a)+f'(a)(x-a)[/tex]

Where f'(a) is the first derivative of f at x=a

The questions gives us this function

[tex]f(x)=\sqrt{x}[/tex]

And the point a=4. Let's compute f(a)

[tex]f(4)=\sqrt{4}=2[/tex]

We are using only the positive root. Now we compute the derivative

[tex]\displaystyle f'(x)=\frac{1}{2\sqrt{x}}[/tex]

[tex]\displaystyle f'(4)=\frac{1}{2\sqrt{4}}[/tex]

[tex]\displaystyle f'(4)=\frac{1}{4}[/tex]

Replacing the values into the equation

[tex]\displaystyle L(x)=2+\frac{1}{4}(x-4)[/tex]

[tex]\displaystyle L(x)=1+\frac{1}{4}x[/tex]