Help pleaseeeeeeeeeeeeeeeeeeeeeee

Answer: [tex]\bold{(1)\ \dfrac{19,683}{64}\qquad (2)\ 16}[/tex]
Step-by-step explanation:
(1) (12, 18, 27, ...)
The common ratio is:
[tex]r=\dfrac{a_{n+1}}{a_n}\quad r =\dfrac{18}{12}=\boxed{\dfrac{3}{2}}\quad \rightarrow \quad r=\dfrac{27}{18}=\boxed{\dfrac{3}{2}}[/tex]
The equation is:
[tex]a_n=a_o(r)^{n-1}\\\\Given:a_o=12,\ r=\dfrac{3}{2}\\\\\\Equation:\\a_n =12\bigg(\dfrac{3}{2}\bigg)^{n-1}\\\\\\\\9th\ term:\\a_9=12\bigg(\dfrac{3}{2}\bigg)^{9-1}\\\\\\a_9=12\bigg(\dfrac{3}{2}\bigg)^{8}\\\\\\.\quad =\large\boxed{\dfrac{19643}{64}}[/tex]
[tex](2)\qquad \bigg(\dfrac{1}{16},\dfrac{1}{8},\dfrac{1}{4},\dfrac{1}{2}\bigg)\\\\\\\text{The common ratio is}:\\\\r=\dfrac{a_{n+1}}{a_n}\quad r=\dfrac{\frac{1}{8}}{\frac{1}{16}}=\boxed{2}\quad \rightarrow \quad r=\dfrac{\frac{1}{4}}{\frac{1}{8}}=\boxed{2}[/tex]
The equation is:
[tex]a_n=a_o(r)^{n-1}\\\\Given:a_o=\dfrac{1}{16},\ r=2\\\\\\Equation:\\a_n =\dfrac{1}{16}(2)^{n-1}\\\\\\\\9th\ term:\\a_9=\dfrac{1}{16}(2)^{9-1}\\\\\\a_9=\dfrac{1}{16}(2)^{8}\\\\\\.\quad =\large\boxed{16}[/tex]