Answer:
It is proved that A is idempotent if and only if [tex]A^T[/tex] is idempotent.
Step-by-step explanation:
Case-1 : First assume that A is idempotent that is, [tex]A^2=A[/tex]. We have to show by using this [tex](A^T)^2=A^T[/tex]. So,
[tex](A^T)^2=A^T\times A^T=(A\times A)^T=(A^2)^T=A^T[/tex]
Thus [tex]A^T[/tex] is idempotent.
Case-2 :
Conversly, assuming [tex]A^T[/tex] is idempotent, thet is, [tex](A^T)^2=A^T[/tex] . We have to show [tex]A^2=A[/tex]. So,
[tex]A^2=A\times A=(A^T)^T\times(A^T)^T=(A^T\times A^T)^T[/tex]
[tex]=((A^T)^2)^T=(A^T)^T=A[/tex]
Thus A is idempotent. Hence proved.