Respuesta :

The function of the data is [tex]f(x)=-\frac{3}{2} x+\frac{3}{2}[/tex].

Solution:

Let y = f(x)

Take any two points on the table.

(-3, 6) and (3, -3)

So [tex]x_1=-3, y_1=6, x_2=3, y_2=-3[/tex]

Slope of the line:

[tex]$m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]$m=\frac{-3-6}{3-(-3)}[/tex]

[tex]$m=\frac{-9}{6}[/tex]

[tex]$m=-\frac{3}{2}[/tex]

Using point-slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]$y-6=-\frac{3}{2} (x-(-3))[/tex]

[tex]$y-6=-\frac{3}{2} (x+3)[/tex]

[tex]$y-6=-\frac{3}{2} x-\frac{9}{2}[/tex]

Add 6 from both sides, we get

[tex]$y=-\frac{3}{2} x+\frac{3}{2}[/tex]

[tex]$f(x)=-\frac{3}{2} x+\frac{3}{2}[/tex]

The function of the data is [tex]f(x)=-\frac{3}{2} x+\frac{3}{2}[/tex].