Answer:
[tex]5.3\times 10^{-6}[/tex] its solubility product constant for this temperature.
Explanation:
[tex]Ag_SO_4\rightleftharpoons 2Ag^++SO_4^{2-}[/tex]
The solubility of silver sulfate = [tex][Ag_2SO_4]=0.011 mol/L[/tex]
1 mole of silver sulfate gives 2 moles of silver ions and 1 mole of sulfate ions.
[tex][Ag^+]=2\times [Ag_2SO_4]=2\times 0.011 mol/L = 0.022 mol/L[/tex]
[tex][SO_4^{2-}]=1\times [Ag_2SO_4]=1\times 0.011 mol/L = 0.011 mol/L[/tex]
[tex]Ag_SO_4\rightleftharpoons 2Ag^++SO_4^{2-}[/tex]
The expression if solubility product is given as:
[tex]K_{sp}=[Ag^+]^2[SO_4^{2-}][/tex]
[tex]=(0.022 mol/L)^2\times (0.011 mol/L)=5.3\times 10^{-6}[/tex]
[tex]5.3\times 10^{-6}[/tex] its solubility product constant for this temperature.