contestada

Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm wide. The diffraction pattern is observed on a screen 3.10 m away. Define the width of a bright fringe as the distance between the minima on either side.

Respuesta :

Answer:

[tex]x=4.906nm[/tex]

Explanation:

Data

wavelength: ∧=[tex]633nm[/tex] [tex]∧=0.633um[/tex]

slit: a=[tex]0.400mm[/tex] [tex]a= 400mm[/tex]

[tex]R=3.10m[/tex]

To find tita(angle):

sin(Tita)=∧/a

[tex]sin(tita)=\frac{0.633um}{400um} \\sin(Tita)=0.0015825\\Tita=sin^{-1} (0.0015825)[/tex]

Tita=0.09°

distance between the minima on either side:

[tex]x=R*tan(Tita)\\x=(3.10m)*tan(0.09)\\x=3.10m*0.0015825\\x=0.004906m\\x=4.906nm[/tex]