Solve the following quadratic equation for all values of xx in simplest form.
4(x-8)^2-34=
4(x−8)
2
−34=
\,\,-18
−18

Respuesta :

The values of x are x=6 and x=10.

Step-by-step explanation:

The given quadratic equation is [tex]4(x-8)^{2}-34= -18[/tex]

To solve the quadratic equation for the x values :

The right side of the equation must be zero. For this, add 18 on both sides of the equations.

⇒ [tex]4(x-8)^{2} -34+18 = -18+18[/tex]

⇒ [tex]4(x-8)^{2} - 16 = 0[/tex]

Now, divide the equation by 4 on both sides in order to further simplify the equation.

⇒ [tex](x-8)^{2} -4 = 0[/tex]

Expand the term [tex](x-8)^{2}[/tex] as the algebraic expression [tex](a-b)^{2} = a^{2} + b^{2} - 2ab[/tex]

⇒ [tex](x-8)^{2} = x^{2} + 8^{2} -16x[/tex]

⇒ [tex]x^{2} -16x + 64[/tex]

Replacing the term  [tex](x-8)^{2}[/tex]  as  [tex]x^{2} -16x + 64[/tex]

⇒  [tex]x^{2} -16x + 64-4 = 0[/tex]

⇒   [tex]x^{2} -16x + 60 = 0[/tex]

Using the factorization method,

The roots of the above equation are -6,-10.

  • Sum of the roots = -16.
  • Product of the roots = 60.

Therefore, the solution is (x-6)(x-10)= 0.

The values of x are x=6 and x=10.