Respuesta :

sin θ = [tex]$\frac{-\sqrt{33} }{7}[/tex]

tan θ = [tex]$\frac{-\sqrt{33}}{4}[/tex]

Step-by-step explanation:

It is given that, cos θ = [tex]$\frac{4}{7}[/tex]  then csc θ < 0, which implies that the θ is in the quadrant IV. Since cos θ is [tex]$\frac{adj}{hyp}[/tex] , we need to find the opposite side x.

Using the Pythogarus theorem, we can find the sin and the tan θ as,

7² = 4² + x²

x² = 7² - 4²

x² = 49 - 16

x² = 33

Taking sqrt on both sides, we will get,

x = [tex]\sqrt{33}[/tex]

Using the value of x, we can write the sine and tan ratio as,

sin θ = [tex]$\frac{opp}{hyp}[/tex] = [tex]$\frac{-\sqrt{33} }{7}[/tex]

tan θ =[tex]$\frac{opp}{adj}[/tex] = [tex]$\frac{-\sqrt{33}}{4}[/tex]

Thus we have obtained the values of sin θ and tan θ