Answer:
Distance = [tex]2\sqrt{2}a-2\sqrt{2}b[/tex]
Step-by-step explanation:
We will use distance formula shown below to solve this:
Distance Formula: [tex]\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
Where
x_1 = 2a + 2
y_1 = 2b
x_2 = 2b+2
y_2 = 2a
Substituting, we solve for the expression for distance:
[tex]D=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}\\D=\sqrt{(2a-2b)^2+((2b+2)-(2a+2))^2}\\D=\sqrt{(2a-2b)^2+(2b+2-2a-2)^2}\\D=\sqrt{(2a-2b)^2+(2b-2a)^2}\\D=\sqrt{4a^2 -8ab+4b^2+4b^2-8ab+4a^2}\\D=\sqrt{8a^2-16ab+8b^2}\\D=\sqrt{(2\sqrt{2}a-2\sqrt{2}b)^2}\\D=2\sqrt{2}a-2\sqrt{2}b[/tex]
This is the expression in terms of a, and b, given a > b