Respuesta :

MO = 12 and PR = 3

Solution:

Given [tex]\triangle M N O \sim \Delta P Q R[/tex].

Perimeter of ΔMNO = 48

Perimeter of ΔPQR = 12

MO = 12x and PR = x + 2

If two triangles are similar, then the ratio of corresponding sides is equal to the ratio of perimeter of the triangles.

[tex]$\Rightarrow \frac{\text{Perimeter of }\triangle MNO}{\text{Perimeter of }\triangle PQR} =\frac{MO}{PR}[/tex]

[tex]$\Rightarrow \frac{48}{12} =\frac{12x}{x+2}[/tex]

Do cross multiplication.

[tex]$\Rightarrow 48({x+2})= 12(12x)[/tex]

[tex]$\Rightarrow 48x+96= 144x[/tex]

Subtract 48x from both sides.

[tex]$\Rightarrow 48x+96-48x= 144x-48x[/tex]

[tex]$\Rightarrow 96= 96x[/tex]

Divide by 96 on both sides, we get

⇒ 1 = x

x = 1

Substitute x = 1 in MO an PR.

MO = 12(1) = 12

PR = 1 + 2 = 3

Therefore MO = 12 and PR = 3.