rectangle has an
The area of a rectangle can be expressed by 2^2- 7x - 4.
area of 45, find the positive value for x.

Respuesta :

The positive value for x is 7

Explanation:

Given that the area of a rectangle is expressed by [tex]2x^2-7x-4[/tex]

The area of the rectangle is 45.

We need to determine the positive value for x.

The value for x:

The value of x can be determined by equating both the values of area of a rectangle.

Thus, we have,

[tex]2x^{2} -7x-4=45[/tex]

Subtracting both sides by 45, we have;

[tex]2x^{2} -7x-49=0[/tex]

Let us solve the equation using the quadratic formula.

Thus, we get;

[tex]x=\frac{-(-7) \pm \sqrt{(-7)^2-4(2)(-49)}}{2(2)}[/tex]

Simplifying, we get;

[tex]x=\frac{7 \pm \sqrt{49+392}}{4}[/tex]

[tex]x=\frac{7 \pm \sqrt{441}}{4}[/tex]

[tex]x=\frac{7 \pm 21}{4}[/tex]

Thus, the two values of x are given by

[tex]x=\frac{7 + 21}{4}[/tex]   and   [tex]x=\frac{7 - 21}{4}[/tex]

[tex]x=\frac{28}{4}[/tex]   and   [tex]x=\frac{-14}{4}[/tex]

[tex]x=7[/tex]   and   [tex]x=-\frac{7}{2}[/tex]

Since, x cannot take negative values, then [tex]x=7[/tex]

Thus, the value of x is 7.