Answer:
[tex]KE_2=10712.20\ J[/tex]
Explanation:
Given that
Mass , m = 78 kg
Initial velocity ,v= 19 m/s
Vertical height h= 4.4 m
Now by using energy conservation
Initial kinetic energy + Initial potential energy = Final kinetic energy +Final potential energy
KE₁ + U₁ = KE₂ + U₂
Therefore
[tex]\dfrac{1}{2}mv^2+ 0 = KE_2+mgh[/tex]
Now by putting the values in the above equation
[tex]\dfrac{1}{2}\times 78\times 19^2+ 0 = KE_2+78\times 9.81\times 4.4[/tex]
[tex]KE_2=\dfrac{1}{2}\times 78\times 19^2-78\times 9.81\times 4.4[/tex]
[tex]KE_2=10712.20\ J[/tex]
Therefore the final kinetic energy will be 10712.20 J.