Respuesta :

Option C:

The product of the expression is [tex]\frac{3 x^{2}}{x^{2}+x-2}[/tex].

Solution:

Given expression:

[tex]$\frac{3 x}{x+2} \cdot \frac{x}{x-1}[/tex]

To find the product of the expression:

[tex]$\frac{3 x}{x+2} \cdot \frac{x}{x-1}=\frac{3 x \cdot x}{(x+2)(x-1)}[/tex]

Multiply each term of first expression with each term of second expression.

                     [tex]$=\frac{3 x^2}{x^2-x+2x-2}[/tex]

                     [tex]$=\frac{3 x^2}{x^2+x-2}[/tex]

[tex]$\frac{3 x}{x+2} \cdot \frac{x}{x-1}=\frac{3 x^2}{x^2+x-2}[/tex]

Option C is the correct answer.

The product of the expression is [tex]\frac{3 x^{2}}{x^{2}+x-2}[/tex].