Respuesta :

Option D:

[tex]x<-9 \text { or } x \geq 6[/tex]

Solution:

Given compound inequality:

[tex]6-x>15 \text { or } 2 x-9 \geq 3[/tex]

Let us first solve [tex]6-x>15[/tex].

Subtract 6 from both sides.

[tex]6-x-6>15-6[/tex]

[tex]-x>9[/tex]

To reverse the inequality multiply by -1  on both sides.

[tex](-x)(-1)<9(-1)[/tex]

[tex]x<-9[/tex]

Now solve the next inequality [tex]2 x-9 \geq 3[/tex].

Add 9 on both sides.

[tex]2 x-9+9 \geq 3+9[/tex]

[tex]2 x \geq 12[/tex]

Divide by 2 on both sides.

[tex]$\frac{2 x}{2} \geq \frac{12}{2}[/tex]

[tex]x \geq 6[/tex]

Combine the inequality.

[tex]x<-9 \text { or } x \geq 6[/tex]

Option D is the correct answer.