A rectangular storage container with an open top is to have a volume of 10 m3. The length of this base is twice the width. Material for the base costs $15 per square meter. Material for the sides costs $9 per square meter. Find the cost of materials for the cheapest such container. (Round your answer to the nearest cent.) $

Respuesta :

Answer:

Cost of material is $245.31

Step-by-step explanation:

Let dimension of box,

  • Length, l = x m
  • Width, w = y m
  • Height, h = z m

The length of this base is twice the width.

x = 2y

Volume of box = 10 m³

∴ xyz = 10

⇒ 2y²z = 10

⇒ y²z = 5

[tex]\Rightarrow z=\dfrac{5}{y^2}\ \ \ ...(i)[/tex]

Material for the base costs $15 per square meter.

Total cost of base = 15xy

Total cost of base = 30y²         [∵ x = 2y ]

Material for the sides costs $9 per square meter.

Total cost of side = 9(2xz+2zy)

Total cost of side = 18(xz+yz)

Total cost of material for container = 30y² + 18(xz+yz)

[tex]C(y)=30y^2+18(2y\cdot \dfrac{5}{y^2}+y \dfrac{5}{y^2})[/tex]     [From (i)]

[tex]C(y)=30y^2+\dfrac{270}{y}[/tex]

Differentiate w.r.t y

[tex]C'(y)=60y-\dfrac{270}{y^2}[/tex]

For critical point , C'(y)=0

[tex]60y-\dfrac{270}{y^2}=[/tex]

[tex]y=\sqrt[3]{\dfrac{9}{2}}[/tex]

[tex]x=2y=2\sqrt[3]{\dfrac{9}{2}}[/tex]

[tex]z=\dfrac{5}{y^2}=5\sqrt[3]{\dfrac{4}{81}}[/tex]

The minimum cost of container material  at [tex]y=\sqrt[3]{\dfrac{9}{2}}[/tex]

[tex]C_{min}=30\sqrt[3]{\dfrac{81}{4}}+270\sqrt[3]{\dfrac{2}{9}}[/tex]

[tex]C_{min}=245.31[/tex]

Hence, the cheapest cost of material for container is $245.31