Answer with Step-by-step explanation:
We are given that
LHS
[tex] cos 2x[/tex]
To prove that
[tex] cos 2x=cos^2x-sin^2 x[/tex]
[tex]cos(x+x)[/tex]
We know that
[tex]cos(x+y)=cos xcosy-sinx siny[/tex]
Using the formula
[tex]cos(x+x)=cosx\cdot cosx-sinx\cdot sinx[/tex]
[tex] cos2 x=cos^2 x-sin^2 x[/tex]
By using
[tex] cosx\cdot cosx=cos^2 x[/tex]
[tex]sinx\cdot sinx=sin^2 x[/tex]
LHS=RHS
Hence, proved.