Answer:
[tex]4.6*10^{-14}[/tex] M
Explanation:
Concentration of [tex]Cu^{2+} = [Cu(NO_3)_2][/tex] = 0.020 M
Constructing an ICE table;we have:
[tex]Cu^{2+}+4NH_3_{aq} \rightleftharpoons [Cu(NH_3)_4]^{2+}_{(aq)}[/tex]
Initial (M) 0.020 0.40 0
Change (M) - x - 4 x x
Equilibrium (M) 0.020 -x 0.40 - 4 x x
Given that: [tex]K_f =1.7*10^{13}[/tex]
[tex]K_f } = \frac{[Cu(NH_3)_4]^{2+}}{[Cu^{2+}][NH_3]^4}[/tex]
[tex]1.7*10^{13} = \frac{x}{(0.020-x)(0.40-4x)^4}[/tex]
Since x is so small; 0.40 -4x = 0.40
Then:
[tex]1.7*10^{13} = \frac{x}{(0.020-x)(0.0256)}[/tex]
[tex]1.7*10^{13} = \frac{x}{(5.12*10^{-4}-0.0256x)}[/tex]
[tex]1.7*10^{13}(5.12*10^{-4} - 0.0256x) = x[/tex]
[tex]8.704*10^9-4.352*10^{11}x =x[/tex]
[tex]8.704*10^9 = 4.352*10^{11}x[/tex]
[tex]x = \frac{8.704*10^9}{4.352*10^{11}}[/tex]
[tex]x = 0.0199999999999540[/tex]
[tex]Cu^{2+}= 0.020 - 0.019999999999954[/tex]
[tex]Cu^{2+} = 4.6*10^{-14}[/tex] M