A discus thrower turns with angular acceleration of 50 rad/s2, moving the discus in a circle of radius 0.80m. Find the radial and tangential components of acceleration of the discus when the angular velocity is 10 rad/s. (80 m/s2, 40 m/s2).

Respuesta :

Answer:

The value of tangential acceleration [tex]\alpha_{t} =[/tex]  40 [tex]\frac{m}{s^{2} }[/tex]

The value of radial acceleration [tex]\alpha_{r} = 80 \frac{m}{s^{2} }[/tex]

Explanation:

Angular acceleration = 50 [tex]\frac{rad}{s^{2} }[/tex]

Radius of the disk = 0.8 m

Angular velocity = 10 [tex]\frac{rad}{s}[/tex]

We know that tangential acceleration is given by the formula [tex]\alpha_{t} =[/tex] [tex]r \alpha[/tex]

Where r =  radius of the disk

[tex]\alpha[/tex] = angular acceleration

⇒ [tex]\alpha_{t} =[/tex] 0.8 × 50

[tex]\alpha_{t} =[/tex] 40 [tex]\frac{m}{s^{2} }[/tex]

This is the value of tangential acceleration.

Radial acceleration is given by

[tex]\alpha_{r} = \frac{V^{2} }{r}[/tex]

Where V = velocity of the disk = r [tex]\omega[/tex]

⇒ V = 0.8 × 10

⇒ V = 8 [tex]\frac{m}{s}[/tex]

Radial acceleration

[tex]\alpha_{r} = \frac{8^{2} }{0.8}[/tex]

[tex]\alpha_{r} = 80 \frac{m}{s^{2} }[/tex]

This is the value of radial acceleration.

The radial and tangential acceleration of a discus is required.

The radial acceleration is [tex]80\ \text{m/s}^2[/tex]

The tangential acceleration is [tex]40\ \text{m/s}^2[/tex]

[tex]\alpha[/tex] = Angular acceleration = [tex]50\ \text{rad/s}^2[/tex]

r = Radius = 0.8 m

[tex]\omega[/tex] = Angular velocity = 10 rad/s

Radial acceleration is given by

[tex]a_r=r\omega^2\\\Rightarrow a_r=0.8\times 10^2\\\Rightarrow a_r=80\ \text{m/s}^2[/tex]

Tangential acceleration is given by

[tex]a_t=\alpha r\\\Rightarrow a_t=50\times 0.8\\\Rightarrow a_t=40\ \text{m/s}^2[/tex]

Learn more:

https://brainly.com/question/14893907?referrer=searchResults