Respuesta :

x = {0, π/6}

Step-by-step explanation:

   2sin^2x-sinx=0

and i know the answer is this..

   2sin²(x) - sin(x) = 0

   sin2(x) is sin(x) × sin(x) so 2sin²(x) - sin(x) = 2 sin(x) × sin(x) - sin(x) and this expression has a common factor of sin(x) so

     2sin²(x) - sin(x) = 2 sin(x) × sin(x) - sin(x) = sin(x) [2 sin(x) - 1]

    sin(x)(2sin(x)-1) = 0

     sin(x) = 0

    x = 0

     2sin(x) - 1 = 0

    sin(x) = 1/2

    x = π/6

    x = {0, π/6}

The exact solutions are: [tex]x=0,\frac{\pi}{6},\frac{5\pi}{6},\pi,2\pi[/tex]

[tex]2\sin^{2}x-\sin x=0\\\sin x(2\sin x-1)=0[/tex]

Using zero product rule:

[tex]\sin x=0\\x=0,\pi,2\pi[/tex]

[tex]2\sin x-1=0\\\sin x=\frac{1}{2}\\x=\frac{\pi}{6},\frac{5\pi}{6}[/tex]

Learn more: https://brainly.com/question/16236436