Respuesta :
Answer:
[tex]-\frac{m^{12}n^{6}}{2}[/tex]
Step-by-step explanation:
We want to find the quotient of [tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}[/tex]
We apply the quotient rule of indices to simplify the given exponential expression.
[tex]\frac{a^m}{a^n}=a^{m-n}[/tex]
This implies that:
[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}=-\frac{1}{2}m^{9--3}n^{4--2}[/tex]
We simplify exponents to get:
[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}=-\frac{1}{2}m^{12}n^{6}[/tex]
Or
[tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}=-\frac{m^{12}n^{6}}{2}[/tex]
Therefore the correct choice is [tex]-\frac{m^{12}n^{6}}{2}[/tex]
The quotient of the expression after simplification is [tex]- \frac{m^{12} n^{6} }{2}[/tex].
The given parameters:
- [tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}[/tex]
The quotient of the given expression is obtained by simplifying the expression as follows;
- [tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}}= - \frac{2}{4} (m^{9 - (-3)} n ^{4 - (-2)}) = - \frac{1}{2} (m^{12}n^{6}) \\\\[/tex]
The quotient of the expression is written as follows;
- [tex]\frac{2m^9n^4}{-4m^{-3}n^{-2}} = - \frac{m^{12} n^{6} }{2}[/tex]
Thus, the quotient of the expression after simplification is [tex]- \frac{m^{12} n^{6} }{2}[/tex].
Learn more about law of indices here: https://brainly.com/question/10339517