Determine whether each integral is convergent or divergent. If it is convergent evaluate it. (a) integral from 1^(infinity) e^(-2x) dx. (b) integral from 1^2[dz]/[(z-1)^2] . (c) integral from 1^(infinity) [dx]/[root(x)] .

Respuesta :

Answer:

a) So, this integral is convergent.

b) So, this integral is divergent.

c) So, this integral is divergent.

Step-by-step explanation:

We calculate the next integrals:

a)

[tex]\int_1^{\infty} e^{-2x} dx=\left[-\frac{e^{-2x}}{2}\right]_1^{\infty}\\\\\int_1^{\infty} e^{-2x} dx=-\frac{e^{-\infty}}{2}+\frac{e^{-2}}{2}\\\\\int_1^{\infty} e^{-2x} dx=\frac{e^{-2}}{2}\\[/tex]

So, this integral is convergent.

b)

[tex]\int_1^{2}\frac{dz}{(z-1)^2}=\left[-\frac{1}{z-1}\right]_1^2\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\frac{1}{1-1}+\frac{1}{2-1}\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\infty\\[/tex]

So, this integral is divergent.

c)

[tex]\int_1^{\infty} \frac{dx}{\sqrt{x}}=\left[2\sqrt{x}\right]_1^{\infty}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=2\sqrt{\infty}-2\sqrt{1}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=\infty\\[/tex]

So, this integral is divergent.