A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.7 1010 m (inside the orbit of Mercury), at which point its speed is 9.5 104 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6 1012 m from the Sun? (This is the approximate distance of Pluto from the Sun.)

Respuesta :

Answer:

58515.9 m/s

Explanation:

We are given that

[tex]d_1=4.7\times 10^{10} m[/tex]

[tex]v_i=9.5\times 10^4 m/s[/tex]

[tex]d_2=6\times 10^{12} m[/tex]

We have to find the speed (vf).

Work done by surrounding particles=W=0 Therefore, initial energy is equal to final energy.

[tex]K_i+U_i=K_f+U_f[/tex]

[tex]\frac{1}{2}mv^2_i-\frac{GmM}{d_1}=\frac{1}{2}mv^2_f-\frac{GmM}{d_2}[/tex]

[tex]\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2}=\frac{1}{2}v^2_f[/tex]

[tex]v^2_f=2(\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2})[/tex]

[tex]v_f=\sqrt{2(\frac{1}{2}v^2_i-\frac{GM}{d_1}+\frac{GM}{d_2})}[/tex]

Using the formula

[tex]v_f=\sqrt{v^2_i+2GM(\frac{1}{d_2}-\frac{1}{d_1})}[/tex]

[tex]v_f=\sqrt{(9.5\times 10^4)^2+2\times 6.7\times 10^{-11}\times 1.98\times 10^{30}(\frac{1}{6\times 10^{12}}-\frac{1}{4.7\times 10^{10})}[/tex]

Where mass of sun=[tex]M=1.98\times 10^{30} kg[/tex]

[tex]G=6.7\times 10^{-11}[/tex]

[tex]v_f=58515.9 m/s[/tex]