The answer for the following problem is mentioned below.
Explanation:
Given:
Initial pressure ([tex]P_{1}[/tex]) = 5.4 atm
Initial temperature ([tex]T_{1}[/tex]) = 25°C = 273 + 25 = 298 K
Final temperature ([tex]T_{2}[/tex]) = 78°C = 273 + 78 = 351 K
To solve:
Final pressure ([tex]P_{2}[/tex])
We know,
From the ideal gas equation,
P × V = n × R × T
Here from the above equation we can tell that ;
P ∝ T
So;
we can write as;
[tex]\frac{P}{T} \f[/tex] = constant
(i.e.)
[tex]\frac{P_{1} }{P_{2} }[/tex] = [tex]\frac{T_{1} }{T_{2} }[/tex]
Where;
[tex]P_{1}[/tex] = Initial pressure of the gas
[tex]P_{2}[/tex] = final pressure of the gas
[tex]T_{1}[/tex] = initial temperature of the gas
[tex]T_{2}[/tex] = final temperature of the gas
[tex]\frac{5.4}{P_{2} }[/tex] = [tex]\frac{298}{351}[/tex]
[tex]P_{2}[/tex] = [tex]\frac{5.4*351}{298}[/tex]
[tex]P_{2}[/tex] = 6.3 atm
Therefore the final pressure of the gas is 6.3 atm