A point P(x,y) is shown on the unit circle corresponding to a real number t. Find the values of the trigonometric functions at t. The point P is (-15/17, -8/17).

A point Pxy is shown on the unit circle corresponding to a real number t Find the values of the trigonometric functions at t The point P is 1517 817 class=

Respuesta :

Answer:

sin t = [tex]-\frac{8}{17}[/tex]

cos t = [tex]-\frac{15}{17}[/tex]

tan t = [tex]\frac{8}{15}[/tex]

csc t = [tex]-\frac{17}{8}[/tex]  

sec t = [tex]-\frac{17}{15}[/tex]  

cot t = [tex]\frac{15}{8}[/tex]  

Step-by-step explanation:

In the unit circle:

x-coordinate of any point on the circle represents cosine the angle between the positive part of x-axis and the segment joining the center of the circle and this point

y-coordinate of any point on the circle represents sine the angle between the positive part of x-axis and the segment joining the center of the circle and this point

In the given figure

∵ t represents the angle between the positive part of x-axis

    and the segment drawn from the center of the circle and

    point P

∴ The coordinates of point P are (cos t , sin t)

∵ The coordinates of P are ( [tex]-\frac{15}{17}[/tex] , [tex]-\frac{8}{17}[/tex] )

sin t = [tex]-\frac{8}{17}[/tex]

∴ cos t = [tex]-\frac{15}{17}[/tex]

∵ tan t = [tex]\frac{sin(t)}{cos(t)}[/tex]

- Substitute the values of sin t and cos t

∴ tan t = [tex]\frac{-\frac{8}{17}}{-\frac{15}{17}}[/tex]

- Multiply up and down by 17 to simplify the fraction

tan t = [tex]\frac{8}{15}[/tex]

∵ csc t = [tex]\frac{1}{sin(t)}[/tex]

- Reciprocal the value of sin t

csc t = [tex]-\frac{17}{8}[/tex]  

∵ sec t = [tex]\frac{1}{cos(t)}[/tex]

- Reciprocal the value of cos t

sec t = [tex]-\frac{17}{15}[/tex]  

∵ cot t = [tex]\frac{1}{tan(t)}[/tex]

- Reciprocal the value of tan t

cot t = [tex]\frac{15}{8}[/tex]