Respuesta :

(6) Given that in ΔPQR, m∠P = (x+14)°, m∠Q = (6x-12)° and m∠R = (3x+8)°

We need to determine the value of x.

Value of x:

By triangle sum property, we have;

[tex]\angle P+\angle Q+\angle R=180^{\circ}[/tex]

Substituting the values, we get;

[tex]x+14+6x-12+3x+8=180[/tex]

                          [tex]10x+10=180[/tex]

                                  [tex]10x=170[/tex]

                                      [tex]x=17[/tex]

Thus, the value of x is 17

(7) Given that ΔGHI, m∠G = (4x+13)°, m∠H = (8x-52)° and m∠I = (2x+4)°

We need to determine the measure of ∠G

Value of x:

By triangle sum property, we have;

[tex]\angle G+\angle H +\angle I=180[/tex]

Substituting the values, we get;

[tex]4x+13+8x-5+2x+4=180[/tex]

                          [tex]14x+12=180[/tex]

                                  [tex]14x=168[/tex]

                                      [tex]x=12[/tex]

Thus, the value of x is 12.

The measure of ∠G:

Substituting x = 12 in m∠G = (4x+13)°, we get;

[tex]m\angle G=(4(12)+13)^{\circ}[/tex]

[tex]m\angle G=(48+13)^{\circ}[/tex]

[tex]m\angle G=61^{\circ}[/tex]

Thus, the measure of angle G is 61°