Respuesta :

Answer:

b

Step-by-step explanation:

cos(t) + i * sin(t) = e^(i * t)

Therefore, (cos(t) + i * sin(t)) / (cos(s) + i * sin(s)) = cos(t - s) + i * sin(t - s)

9 * (cos(135) + i * sin(135)) / (7 * (cos(10) + i * sin(10))) =>

(9/7) * (cos(135 - 10) + i * sin(135 - 10)) =>

(9/7) * (cos(125) + i * sin(125))

The Quotients of the given expression is option B; (9/7) cos(125) + i sin(125)).

What are the Quotients?

Quotients are the number that is obtained by dividing one number by another number.

We know that

cos(t) + i sin(t) = e^(i t)

Given;

9 (cos 135 + i sin 135)

---------------------------------

7(cos 10 + i sin 10)

Therefore,

(cos(t) + i sin(t)) / (cos(s) + i sin(s)) = cos(t - s) + i sin(t - s)

9 (cos(135) + i sin(135)) / (7 (cos(10) + i sin(10)))

(9/7) (cos(135 - 10) + i sin(135 - 10))

(9/7) cos(125) + i sin(125))

The correct answer is option B; (9/7) cos(125) + i sin(125)).

Learn more about this concept;

https://brainly.com/question/27796160

#SPJ2