Answer:
At h=0.1 value od y(1.2)=15.920, and at h=0.05, y(1.2)=16.523.
Step-by-step explanation:
Given,
[tex]f(x,y)=\frac{dy}{dx}=2x+3y+1[/tex] with y(1)=9.
That is when x=1 then y=9 initially.
To find value of y= f(x,y) at [tex]x_n=x_0+nh=1.2[/tex] when y=0.1 and y=0.05 we will use c-programme of Eular method we get, for h=0.1 :
#include<stdio.h>
float fun(float x, float y)
{
float f;
f=2x+3y+1;
return f;
}
main()
{
float a,b,x,y,h,t,k;
printf("\ Enter x0,y0,h,xn:");
scanf("% f % f % f % f ", & a, &b, &h, &t);
x=a;
y=b;
printf("\n x\t y\n");
while (x<=t)
{
k=h*fun(x,y);
x=x+h;
y=y+k;
printf("%0.3f\%0.3f\n",x,y);
}
}
By putting value x0=1, y0=9, h=0.1, xn=1.2 we will get results as, y(1.2)=15.920.
Again by putting values x0=1, y0=9, 0.h=05, xn=1.2 we get y(1.2)=16.523.