Respuesta :

1. [tex]L \cdot A=\pi r l[/tex]        -       Cone

2. [tex]V=\frac{4}{3} \pi r^{3}[/tex]         -        Sphere

3. [tex]T \cdot A=2 \pi r h+2 \pi r^{2}[/tex] - Cylinder

4. [tex]V=\frac{1}{3} B h[/tex]         -        Pyramid

5. [tex]L . A=p h[/tex]         -        Prism

Solution:

1. [tex]L \cdot A=\pi r l[/tex]

Lateral surface area of cone = [tex]\pi r l[/tex]

where r is the radius of the cone and l is the slant height of the cone.

2. [tex]V=\frac{4}{3} \pi r^{3}[/tex]

Volume of sphere = [tex]\frac{4}{3} \pi r^{3}[/tex]

where r is the radius of the sphere.

3. [tex]T \cdot A=2 \pi r h+2 \pi r^{2}[/tex]

Total surface area of cylinder = [tex]2 \pi r h+2 \pi r^{2}[/tex]

where r is the radius of the cylinder and h is the height of the cylinder.

4. [tex]V=\frac{1}{3} B h[/tex]

Volume of pyramid = [tex]\frac{1}{3} B h[/tex]

where B is the base area of the pyramid and h is the height of the pyramid.

5. [tex]L . A=p h[/tex]

Lateral surface area of prism = [tex]p h[/tex]

where p is the perimeter of the base and h is the height of the prism.