Match the solid figure to the appropriate formula.

1. [tex]L \cdot A=\pi r l[/tex] - Cone
2. [tex]V=\frac{4}{3} \pi r^{3}[/tex] - Sphere
3. [tex]T \cdot A=2 \pi r h+2 \pi r^{2}[/tex] - Cylinder
4. [tex]V=\frac{1}{3} B h[/tex] - Pyramid
5. [tex]L . A=p h[/tex] - Prism
Solution:
1. [tex]L \cdot A=\pi r l[/tex]
Lateral surface area of cone = [tex]\pi r l[/tex]
where r is the radius of the cone and l is the slant height of the cone.
2. [tex]V=\frac{4}{3} \pi r^{3}[/tex]
Volume of sphere = [tex]\frac{4}{3} \pi r^{3}[/tex]
where r is the radius of the sphere.
3. [tex]T \cdot A=2 \pi r h+2 \pi r^{2}[/tex]
Total surface area of cylinder = [tex]2 \pi r h+2 \pi r^{2}[/tex]
where r is the radius of the cylinder and h is the height of the cylinder.
4. [tex]V=\frac{1}{3} B h[/tex]
Volume of pyramid = [tex]\frac{1}{3} B h[/tex]
where B is the base area of the pyramid and h is the height of the pyramid.
5. [tex]L . A=p h[/tex]
Lateral surface area of prism = [tex]p h[/tex]
where p is the perimeter of the base and h is the height of the prism.