3. In order to determine the formula for the volume of a sphere, 2 composite shapes are drawn within the sphere. Which of the following
formulas accurately shows the calculation for a single hemisphere of a sphere that was made by the composite formula of VCylinder - VCone


3 In order to determine the formula for the volume of a sphere 2 composite shapes are drawn within the sphere Which of the following formulas accurately shows t class=

Respuesta :

Option B:

Volume of composite figure is [tex]\frac{2}{3} \pi r^{3}[/tex].

Solution:

Composite figure is made of cylinder and cone.

Radius of cylinder and cone are equal.

Radius of cone and cylinder = r

Height of cylinder and cone are equal to the radius.

Height of cylinder and cone (h) = r

Volume of cylinder = [tex]\pi r^2h[/tex]

                               [tex]=\pi r^2 \times r[/tex]

                               [tex]=\pi r^3[/tex]

Volume of cone = [tex]\frac{1}{3} \pi r^2h[/tex]

                           [tex]$=\frac{1}{3} \pi r^2 \times r[/tex]

                           [tex]$=\frac{1}{3} \pi r^3[/tex]

Volume of composite figure = Volume of cylinder - Volume of cone

                                              [tex]$= \pi r^{3}-\frac{1}{3} \pi r^{3}[/tex]

Take LCM for 1 and 3 and make the denominator same.

                                              [tex]$= \frac{3}{3} \pi r^{3}-\frac{1}{3} \pi r^{3}[/tex]

                                              [tex]$= \frac{3-1}{3} \pi r^{3}[/tex]

                                             [tex]$= \frac{2}{3} \pi r^{3}[/tex]

Volume of composite figure is [tex]\frac{2}{3} \pi r^{3}[/tex].

Option B is the correct answer.