Calculate the pOH of a solution that results from mixing 46 mL of 0.11 M trimethylamine ((CH3)3N) with 17 mL of 0.13 M (CH3)3NHCl. The Kb value for (CH3)3N is 6.5 x 10-5.

Respuesta :

znk

Answer:

[tex]\large \boxed{\text{3.75}}[/tex]

Explanation:

The equation for the equilibrium is

[tex]\rm (CH_3)_{3}N + H_2O \, \rightleftharpoons \,(CH_3)_{3}NH^{+} + \text{OH}^{-}\\\text{For ease of typing, let's rewrite this equation as}\\\rm B + H_2O \, \rightleftharpoons \, BH^{+} + OH^{-}; K_{\text{b}} = 6.5 \times 10^{-5}[/tex]

Data:

Vb = 46 mL;      [B] = 0.11 mol·L⁻¹

Va = 17 mL; [BH⁺] = 0.13 mol·L⁻¹

Kb = 6.5 × 10⁻⁵

Calculations:

1. Calculate the moles of B and BH⁺

(a) Moles of B

[tex]\text{moles of B} = \text{46 mL B} \times \dfrac{\text{0.11 mmoL B}}{\text{1 mL B}} = \text{5.06 mmol B}[/tex]

(b) Moles of BH⁺

[tex]\text{moles of BH}^{+} = \text{17 mL BH}^{+} \times \dfrac{\text{0.13 mmoL BH}^{+}}{\text{1 mL BH}^{+}} = \text{2.21 mmol BH}^{+}[/tex]

2. Calculate the pOH

The Henderson-Hasselbalch equation for a basic buffer is

[tex]\text{pOH} = \text{p}K_{\text{b}} + \log\dfrac{[\text{BH}^{+}]}{\text{[B]}}[/tex]

(a) Calculate pKb

[tex]\text{pK}_{\text{b}} = -\log(6.5 \times 10^{-5}) = 4.19[/tex]

(b) Calculate the pOH

The components are in the same solution, so the ratio of the moles is the same as the ratio of the concentrations

[tex]\text{pOH} = 4.19 + \log \dfrac{2.21}{5.06} = 4.19 + \log 0.437 = 4.19 - 0.437 = 3.75\\\\\text{The pOH of the solution is $\large \boxed{\textbf{3.75}}$}[/tex]