Respuesta :

Answer:

42°

Step-by-step explanation:

It appears that angle AOC is right angle.

If it is so then let us calculate:

[tex]m\angle AOB + m \angle BOC = 90 \degree \\ \therefore \: 5x + 8 \degree + 6x - 6 \degree= 90 \degree \\ \therefore \:11x + 2 \degree = 90 \degree\\ \therefore \:11x = 90 \degree - 2 \degree \\ \therefore \:11x = 88 \degree \\ \therefore \:x = \frac{88 \degree }{11} \\\therefore \:x = 8\degree \\ \\ \because \: m \angle BOC = 6x - 6 \degree \\ \therefore \: m \angle BOC = 6 \times8 \degree - 6 \degree \\\therefore \: m \angle BOC = 48 \degree - 6 \degree \\\\ \huge \orange{ \boxed{ \therefore \: m \angle BOC = 42\degree}}[/tex]