Se tiene un rectángulo cuya base mide el doble que su altura y su área es 12
centímetros cuadrados. Calcular el perímetro del rectángulo y su diagonal.

Respuesta :

Answer:

Part 1) The perimeter is  [tex]P=6\sqrt{6}\ cm[/tex]

Part 2) The diagonal is [tex]d=\sqrt{30}\ cm[/tex]

Step-by-step explanation:

The question in English is

You have a rectangle whose base is twice the height and its area is 12

square centimeters. Calculate the perimeter of the rectangle and its diagonal

step 1

Find the dimensions of rectangle

we know that

The area of rectangle is equal to

[tex]A=bh[/tex]

[tex]A=12\ cm^2[/tex]

so

[tex]bh=12[/tex] ----> equation A

The base is twice the height

so

[tex]b=2h[/tex] ----> equation B

substitute equation B in equation A

[tex](2h)h=12\\2h^2=12\\h^2=6\\h=\sqrt{6}\ cm[/tex]

Find the value of b

[tex]b=2\sqrt{6}\ cm[/tex]

step 2

Find the perimeter of rectangle

The perimeter is given by

[tex]P=2(b+h)[/tex]

substitute

[tex]P=2(2\sqrt{6}+\sqrt{6})\\P=6\sqrt{6}\ cm[/tex]

step 3

Find the diagonal of rectangle

Applying the Pythagorean Theorem

[tex]d^2=b^2+h^2[/tex]

substitute

[tex]d^2=(2\sqrt{6})^2+(\sqrt{6})^2[/tex]

[tex]d^2=30[/tex]

[tex]d=\sqrt{30}\ cm[/tex]