[tex]y\sqrt{15y}[/tex] is the term after removing perfect square from [tex]\sqrt{15y^3}[/tex] .
Step-by-step explanation:
Here we have , an expression as \sqrt{15y^3} or [tex]\sqrt{15y^3}[/tex] . We need to remove all perfect squares inside the square root . Let's find out:
We know that a perfect square is the term whose degree is two , or can be written in form [tex]a^2[/tex] , Where a is any term or integer or value or variable . Now ,
⇒ [tex]\sqrt{15y^3}[/tex]
⇒ [tex]\sqrt{15y(y)(y)}[/tex]
⇒ [tex]\sqrt{15y(y^2)}[/tex]
⇒ [tex]\sqrt{15y}(\sqrt{(y^2)})[/tex]
⇒ [tex]\sqrt{15y}((y^2)^{\frac{1}{2}})[/tex]
⇒ [tex]\sqrt{15y}(y)[/tex]
⇒ [tex]y\sqrt{15y}[/tex]
Therefore , [tex]y\sqrt{15y}[/tex] is the term after removing perfect square from [tex]\sqrt{15y^3}[/tex] .